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Motivation: Zero-shot agents

• Want agents to find anything, 
even without additional training


• Move towards more general 
purpose A.I. systems



Motivation: Language-driven agents

Red apple

✅ ⛔

Apple on a shelf

✅ ⛔

Apple in a bowl

✅ ⛔



Task
• Inputs:


• Output:


Egocentric RGB + D

Action: direction to move (or stop)

 ↩   ⬇   ↪  🛑 

Language for the target object

“...apple...”

“...apple on a table…”

“...red apple…”

OR

OR



How would one do this task?

• Look around


• When you see what you are 
looking for, go to it!



CoW

If object is in view:

    move to it 

else:

    explore

…
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Egocentric view

Target: plant!

explore



Egocentric view Object relevance

Target: plant!

explore



Voxel projected object relevance map

Egocentric view Object relevance

Target: plant!

explore



Voxel projected object relevance map

Egocentric view Object relevance

Target: plant!

explore



Voxel projected object relevance map

Egocentric view Object relevance

Target: plant!

object is in view



Voxel projected object relevance map

Egocentric view Object relevance

Target: plant!

object is in view



Pasture: Uncommon Objects

4.3. Object Localization
Successful navigation depends on object localization:

the ability to tell if and where an object is in an image. Re-
gions of high object relevance, extracted from 2D images,
are projected to the depth-based map (Fig. 3 (b)) where they
serve as natural navigation targets. To determine if and
when a target is in an image, we consider the following ob-
ject localization modules, used in our experiments (Sec. 6).
For more details see Appx. C.
Adapting open-vocabulary classifiers. We experiment
with three strategies to turn CLIP [61] models into object
localizers. First, we utilize the CLIP text encoder to em-
bed k referring expressions, which specify regions where
the target object may appear in the image. For example,
“a plant in the top left of the image.” We then match the
language embeddings against a CLIP visual embedding for
the current observation. We compute similarity between the
image and text features to determine relevance scores over
the regions. Second, we discretize the image into k smaller
patches and obtain CLIP patch embeddings. We then con-
volve each patch embedding with a CLIP text embedding
for the target object. If the object is in a patch, the rele-
vance score for that patch should be high. Third, we modify
an interpretability method [13, 70] designed to extract ob-
ject relevancy from vision transformers (ViTs) [24]. Using
a target CLIP text embedding and gradient information ac-
cumulated through the CLIP vision encoder, we construct
a relevance map over input pixels, which qualitatively seg-
ments the target when it is in view.
Adapting open-vocabulary detectors and segmentors. In
addition to CLIP-based methods, we consider two addi-
tional open-vocabulary models for object localization. First,
the MDETR segmentation model [36], which extends the
DETR detector [8] to take arbitrary text and images as in-
put and output box detections. The base model is fine-tuned
on PhraseCut [80], a dataset of paired masks and attribute
descriptions, to support segmentation. Second, we consider
the OWL-ViT detector [49], which uses a set prediction
fine-tuning recipe to turn CLIP-like models into object de-
tectors. We use this MDETR and OWL-ViT models to di-
rectly query images for targets.
Post-processing. The aforementioned models give con-
tinuous valued predictions. However, we are interested
in binary masks giving if and where objects are in im-
ages. Hence, we threshold predictions for each model (see
Appx. C for details). We further investigate two strategies
for using the masks downstream: (1) using the entire mask
or (2) using the center pixel. The second strategy is reason-
able because only part of an object needs to be detected for
successful navigation.
Target driven planning. Recall, CoWs have depth sensors.
We back-project object relevance from 2D images into the

“whiteboard saying CVPR”

“tie-dye surfboard”

“llama wicker basket”

“green plastic crate”

“rice cooker”

“maté gourd”

“red and blue tricycle”

“white electric guitar”

“espresso machine”

“wooden toy airplane”

“gingerbread house”

“graphics card”

Figure 4. Uncommon objects in PASTURE.

depth-based map (Sec. 4.1). We keep only the max rele-
vance for each map cell (Fig. 3 (b)). CoWs can then plan to
high relevance areas in the map. See Appx. D for additional
method visualization.
Incorporating object priors. Since CoW does not train
or fine-tune on navigation datasets, we investigate alterna-
tive approaches to inject object-level priors into the model.
For each target object, we prompt GPT-3.5 [55] to generate
rooms where the target objects are likely to be found. For
example, GPT-3.5 states that apples are likely to be found in
“kitchen” or “dining room” scenes. Following this prior, a
GPT-3.5 enabled CoW first uses its object localization mod-
ule to localize a kitchen or a dining room, and then looks for
an apple. This straightforward extension, demonstrates how
outside information can be incorporated into CoW.

5. The PASTURE Benchmark
To evaluate CoW baselines and future methods on L-

ZSON, we introduce the PASTURE evaluation benchmark.
PASTURE builds on ROBOTHOR validation scenes, which
have parallel environments in the real-world. We tar-
get ROBOTHOR to facilitate future real-world benchmark-
ing. PASTURE probes for seven capabilities explained in
Sec. 5.1. We provide dataset statistics in Sec. 5.2.

5.1. PASTURE Tasks
PASTURE evaluates seven core L-ZSON capabilities.

Uncommon objects. Traditional benchmarks (e.g.,
ROBOTHOR and HABITAT MP3D) evaluate agents on
common object categories like TVs; however, given the rich
diversity of objects in homes, we would like to understand
navigation performance on uncommon objects. Hence we
add 12 new objects to each room. We use names shown in
Fig. 4 as instance labels, which are minimal descriptions to
identify each object. Some identifiers refer to text in im-
ages (e.g., “whiteboard saying CVPR”) or to appearance at-
tributes (e.g., “wooden toy airplane”). Other objects are less
common in North America, like “maté”, which is a popular
Argentinian drink.
Appearance descriptions. To evaluate if baselines can take
advantage of visual attributes, we introduce descriptions
of the form: “{size}, {color}, {material} {object}”. For

4



Pasture: Object Attributes

distractor apple⛔correct apple ✅ 
“…small, green apple…”

“…apple on a coffee table 
near a laptop…”

Appearance task:

Spatial task:



Pasture: Hidden objects

correct mug ✅ distractor mug⛔

“…mug under the bed…”Hidden object task:



Results: Using attributes
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(a) Attribute object navigation
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(c) Hidden object navigation
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(d) Hidden object navigation
with distractors

y = x

Hidden object
descriptions on task y

Figure 5. PASTURE object navigation with descriptions. In general object navigation with descriptions is more challenging than the
ROBOTHOR object navigation task, as indicated by trend lines lying below the y = x line. (a) Appearance descriptions are more helpful
than spatial descriptions. (b) Performance further drops when distractor objects are introduced to the environment. However, CoWs are still
able to make better use of appearance description than spatial descriptions. (c) Models in the lower success regime (<15% ROBOTHOR
SUCCESS) perform comparably on finding hidden objects. However, this trend plateaus for higher success models. (d) Trends are similar
when distractor objects are introduced for hidden object navigation.

plore this hypothesis in Appx. E by visualizing CLIP re-
trieval results on LAION-5B [68] for the uncommon ob-
ject categories. The relatively high performance on uncom-
mon objects speaks to the flexibility of CoW baselines and
their ability to inherit desirable properties from the open-
vocabulary models that they are constructed from.
Can CoWs utilize appearance and spatial descriptions?
Looking at Fig. 5 (a) we see that neither appearance nor spa-
tial descriptions improve CoW performance compared to
their ROBOTHOR baseline performance (i.e., most points
lie under the y = x line). However, CoW is able to take
better advantage of appearance descriptions than spatial de-
scriptions. These results motivate future investigation on
open-vocabulary object localization with a greater focus on
textual object attributes.
Can CoWs find visible objects in the presence of distrac-
tors? In Fig. 5 (b) we see that CoWs experience perfor-
mance degradation when compared to Fig. 5 (a). We con-
clude that appearance and spatial attributes added as lan-
guage input are not sufficient to deal with the complexity of
distractors given current open-vocabulary models.
Can CoWs find hidden objects? Looking at Fig. 5 (c) we
notice that models in the lower success regime (less than
15% SUCCESS on ROBOTHOR) are able to find hidden ob-
jects at about the same rate as ROBOTHOR objects (i.e.,
they lie on the y = x line). OWL models in the higher suc-
cess regime (>15%) do not continue this trend; however,
they do achieve higher absolute accuracy as seen in Tab. 1.
Dealing with occlusion is a longstanding problem in com-
puter vision, and these results provide a foundation upon
which future hidden object navigation work can improve.
Can CoWs find hidden objects in the presence of dis-
tractors? Comparing Figs. 5 (c) and (d), we notice similar
trends lines, with the best models performing worse with
distractors. This suggests that distractors are less of a con-

CoW breeds PASTURE (Avg.) ROBOTHOR
ID Loc. Arch. Exp. Strategy SPL SR SPL SR

N OWL B/32 ROBOTHOR learn. 10.2 17.3 13.1 20.9N OWL B/32 HABITAT learn. 8.6 19.4 9.8 20.4N OWL B/32 FBE 12.6 21.1 16.9 26.7

Table 2. Exploration ablation. For a fixed object localizer
(OWL-ViT B/32 with post processing), we ablate over different
choices of exploration policy: the FBE heuristic, agents trained in
ROBOTHOR, and HABITAT (MP3D). We find that FBE outper-
forms learnable alternatives on both PASTURE and ROBOTHOR.
HABITAT learnable model perform worst, but are not trained on
any PASTURE or ROBOTHOR data.

CoW breeds PASTURE Uncom. ROBOTHOR
ID Loc. Arch. Obj. Prior SPL SR SPL SR

N OWL B/32 None 20.5 32.8 16.8 26.7N OWL B/32 GPT-3.5 22.2 36.9 17.0 27.5

Table 3. CoW with GPT-3.5 priors. Leveraging GPT-3.5, we
generate priors for objects (e.g., apples are likely to be in dining
room scenes). Instead of directly searching for the target object,
CoW first searches for the scenes, which boosts performance.

cern in the case of hidden objects than for visible object
targets. In light of the fact that detection methods generally
work better on larger objects, we hypothesize this effect is
because distractor objects are smaller (e.g., apples, vases,
basketballs) than objects used to conceal target categories
(e.g., beds, sofas, etc.).

What exploration method performs best? We ablate
the decision to use FBE for most experiments by fixing an
object localizer (OWL, B/32 (N)) and comparing against
ROBOTHOR learnable exploration and HABITAT learnable
exploration in Tab. 2. We notice that FBE performs best in
all cases; however, learnable exploration still performs well
suggesting that these models do learn useful strategies for
the downstream tasks.
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(c) Hidden object navigation
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Figure 5. PASTURE object navigation with descriptions. In general object navigation with descriptions is more challenging than the
ROBOTHOR object navigation task, as indicated by trend lines lying below the y = x line. (a) Appearance descriptions are more helpful
than spatial descriptions. (b) Performance further drops when distractor objects are introduced to the environment. However, CoWs are still
able to make better use of appearance description than spatial descriptions. (c) Models in the lower success regime (<15% ROBOTHOR
SUCCESS) perform comparably on finding hidden objects. However, this trend plateaus for higher success models. (d) Trends are similar
when distractor objects are introduced for hidden object navigation.

plore this hypothesis in Appx. E by visualizing CLIP re-
trieval results on LAION-5B [68] for the uncommon ob-
ject categories. The relatively high performance on uncom-
mon objects speaks to the flexibility of CoW baselines and
their ability to inherit desirable properties from the open-
vocabulary models that they are constructed from.
Can CoWs utilize appearance and spatial descriptions?
Looking at Fig. 5 (a) we see that neither appearance nor spa-
tial descriptions improve CoW performance compared to
their ROBOTHOR baseline performance (i.e., most points
lie under the y = x line). However, CoW is able to take
better advantage of appearance descriptions than spatial de-
scriptions. These results motivate future investigation on
open-vocabulary object localization with a greater focus on
textual object attributes.
Can CoWs find visible objects in the presence of distrac-
tors? In Fig. 5 (b) we see that CoWs experience perfor-
mance degradation when compared to Fig. 5 (a). We con-
clude that appearance and spatial attributes added as lan-
guage input are not sufficient to deal with the complexity of
distractors given current open-vocabulary models.
Can CoWs find hidden objects? Looking at Fig. 5 (c) we
notice that models in the lower success regime (less than
15% SUCCESS on ROBOTHOR) are able to find hidden ob-
jects at about the same rate as ROBOTHOR objects (i.e.,
they lie on the y = x line). OWL models in the higher suc-
cess regime (>15%) do not continue this trend; however,
they do achieve higher absolute accuracy as seen in Tab. 1.
Dealing with occlusion is a longstanding problem in com-
puter vision, and these results provide a foundation upon
which future hidden object navigation work can improve.
Can CoWs find hidden objects in the presence of dis-
tractors? Comparing Figs. 5 (c) and (d), we notice similar
trends lines, with the best models performing worse with
distractors. This suggests that distractors are less of a con-

CoW breeds PASTURE (Avg.) ROBOTHOR
ID Loc. Arch. Exp. Strategy SPL SR SPL SR

N OWL B/32 ROBOTHOR learn. 10.2 17.3 13.1 20.9N OWL B/32 HABITAT learn. 8.6 19.4 9.8 20.4N OWL B/32 FBE 12.6 21.1 16.9 26.7

Table 2. Exploration ablation. For a fixed object localizer
(OWL-ViT B/32 with post processing), we ablate over different
choices of exploration policy: the FBE heuristic, agents trained in
ROBOTHOR, and HABITAT (MP3D). We find that FBE outper-
forms learnable alternatives on both PASTURE and ROBOTHOR.
HABITAT learnable model perform worst, but are not trained on
any PASTURE or ROBOTHOR data.

CoW breeds PASTURE Uncom. ROBOTHOR
ID Loc. Arch. Obj. Prior SPL SR SPL SR

N OWL B/32 None 20.5 32.8 16.8 26.7N OWL B/32 GPT-3.5 22.2 36.9 17.0 27.5

Table 3. CoW with GPT-3.5 priors. Leveraging GPT-3.5, we
generate priors for objects (e.g., apples are likely to be in dining
room scenes). Instead of directly searching for the target object,
CoW first searches for the scenes, which boosts performance.

cern in the case of hidden objects than for visible object
targets. In light of the fact that detection methods generally
work better on larger objects, we hypothesize this effect is
because distractor objects are smaller (e.g., apples, vases,
basketballs) than objects used to conceal target categories
(e.g., beds, sofas, etc.).

What exploration method performs best? We ablate
the decision to use FBE for most experiments by fixing an
object localizer (OWL, B/32 (N)) and comparing against
ROBOTHOR learnable exploration and HABITAT learnable
exploration in Tab. 2. We notice that FBE performs best in
all cases; however, learnable exploration still performs well
suggesting that these models do learn useful strategies for
the downstream tasks.
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(c) Hidden object navigation
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Figure 5. PASTURE object navigation with descriptions. In general object navigation with descriptions is more challenging than the
ROBOTHOR object navigation task, as indicated by trend lines lying below the y = x line. (a) Appearance descriptions are more helpful
than spatial descriptions. (b) Performance further drops when distractor objects are introduced to the environment. However, CoWs are still
able to make better use of appearance description than spatial descriptions. (c) Models in the lower success regime (<15% ROBOTHOR
SUCCESS) perform comparably on finding hidden objects. However, this trend plateaus for higher success models. (d) Trends are similar
when distractor objects are introduced for hidden object navigation.

plore this hypothesis in Appx. E by visualizing CLIP re-
trieval results on LAION-5B [68] for the uncommon ob-
ject categories. The relatively high performance on uncom-
mon objects speaks to the flexibility of CoW baselines and
their ability to inherit desirable properties from the open-
vocabulary models that they are constructed from.
Can CoWs utilize appearance and spatial descriptions?
Looking at Fig. 5 (a) we see that neither appearance nor spa-
tial descriptions improve CoW performance compared to
their ROBOTHOR baseline performance (i.e., most points
lie under the y = x line). However, CoW is able to take
better advantage of appearance descriptions than spatial de-
scriptions. These results motivate future investigation on
open-vocabulary object localization with a greater focus on
textual object attributes.
Can CoWs find visible objects in the presence of distrac-
tors? In Fig. 5 (b) we see that CoWs experience perfor-
mance degradation when compared to Fig. 5 (a). We con-
clude that appearance and spatial attributes added as lan-
guage input are not sufficient to deal with the complexity of
distractors given current open-vocabulary models.
Can CoWs find hidden objects? Looking at Fig. 5 (c) we
notice that models in the lower success regime (less than
15% SUCCESS on ROBOTHOR) are able to find hidden ob-
jects at about the same rate as ROBOTHOR objects (i.e.,
they lie on the y = x line). OWL models in the higher suc-
cess regime (>15%) do not continue this trend; however,
they do achieve higher absolute accuracy as seen in Tab. 1.
Dealing with occlusion is a longstanding problem in com-
puter vision, and these results provide a foundation upon
which future hidden object navigation work can improve.
Can CoWs find hidden objects in the presence of dis-
tractors? Comparing Figs. 5 (c) and (d), we notice similar
trends lines, with the best models performing worse with
distractors. This suggests that distractors are less of a con-

CoW breeds PASTURE (Avg.) ROBOTHOR
ID Loc. Arch. Exp. Strategy SPL SR SPL SR

N OWL B/32 ROBOTHOR learn. 10.2 17.3 13.1 20.9N OWL B/32 HABITAT learn. 8.6 19.4 9.8 20.4N OWL B/32 FBE 12.6 21.1 16.9 26.7

Table 2. Exploration ablation. For a fixed object localizer
(OWL-ViT B/32 with post processing), we ablate over different
choices of exploration policy: the FBE heuristic, agents trained in
ROBOTHOR, and HABITAT (MP3D). We find that FBE outper-
forms learnable alternatives on both PASTURE and ROBOTHOR.
HABITAT learnable model perform worst, but are not trained on
any PASTURE or ROBOTHOR data.

CoW breeds PASTURE Uncom. ROBOTHOR
ID Loc. Arch. Obj. Prior SPL SR SPL SR

N OWL B/32 None 20.5 32.8 16.8 26.7N OWL B/32 GPT-3.5 22.2 36.9 17.0 27.5

Table 3. CoW with GPT-3.5 priors. Leveraging GPT-3.5, we
generate priors for objects (e.g., apples are likely to be in dining
room scenes). Instead of directly searching for the target object,
CoW first searches for the scenes, which boosts performance.

cern in the case of hidden objects than for visible object
targets. In light of the fact that detection methods generally
work better on larger objects, we hypothesize this effect is
because distractor objects are smaller (e.g., apples, vases,
basketballs) than objects used to conceal target categories
(e.g., beds, sofas, etc.).

What exploration method performs best? We ablate
the decision to use FBE for most experiments by fixing an
object localizer (OWL, B/32 (N)) and comparing against
ROBOTHOR learnable exploration and HABITAT learnable
exploration in Tab. 2. We notice that FBE performs best in
all cases; however, learnable exploration still performs well
suggesting that these models do learn useful strategies for
the downstream tasks.
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(c) Hidden object navigation
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Figure 5. PASTURE object navigation with descriptions. In general object navigation with descriptions is more challenging than the
ROBOTHOR object navigation task, as indicated by trend lines lying below the y = x line. (a) Appearance descriptions are more helpful
than spatial descriptions. (b) Performance further drops when distractor objects are introduced to the environment. However, CoWs are still
able to make better use of appearance description than spatial descriptions. (c) Models in the lower success regime (<15% ROBOTHOR
SUCCESS) perform comparably on finding hidden objects. However, this trend plateaus for higher success models. (d) Trends are similar
when distractor objects are introduced for hidden object navigation.

plore this hypothesis in Appx. E by visualizing CLIP re-
trieval results on LAION-5B [68] for the uncommon ob-
ject categories. The relatively high performance on uncom-
mon objects speaks to the flexibility of CoW baselines and
their ability to inherit desirable properties from the open-
vocabulary models that they are constructed from.
Can CoWs utilize appearance and spatial descriptions?
Looking at Fig. 5 (a) we see that neither appearance nor spa-
tial descriptions improve CoW performance compared to
their ROBOTHOR baseline performance (i.e., most points
lie under the y = x line). However, CoW is able to take
better advantage of appearance descriptions than spatial de-
scriptions. These results motivate future investigation on
open-vocabulary object localization with a greater focus on
textual object attributes.
Can CoWs find visible objects in the presence of distrac-
tors? In Fig. 5 (b) we see that CoWs experience perfor-
mance degradation when compared to Fig. 5 (a). We con-
clude that appearance and spatial attributes added as lan-
guage input are not sufficient to deal with the complexity of
distractors given current open-vocabulary models.
Can CoWs find hidden objects? Looking at Fig. 5 (c) we
notice that models in the lower success regime (less than
15% SUCCESS on ROBOTHOR) are able to find hidden ob-
jects at about the same rate as ROBOTHOR objects (i.e.,
they lie on the y = x line). OWL models in the higher suc-
cess regime (>15%) do not continue this trend; however,
they do achieve higher absolute accuracy as seen in Tab. 1.
Dealing with occlusion is a longstanding problem in com-
puter vision, and these results provide a foundation upon
which future hidden object navigation work can improve.
Can CoWs find hidden objects in the presence of dis-
tractors? Comparing Figs. 5 (c) and (d), we notice similar
trends lines, with the best models performing worse with
distractors. This suggests that distractors are less of a con-

CoW breeds PASTURE (Avg.) ROBOTHOR
ID Loc. Arch. Exp. Strategy SPL SR SPL SR

N OWL B/32 ROBOTHOR learn. 10.2 17.3 13.1 20.9N OWL B/32 HABITAT learn. 8.6 19.4 9.8 20.4N OWL B/32 FBE 12.6 21.1 16.9 26.7

Table 2. Exploration ablation. For a fixed object localizer
(OWL-ViT B/32 with post processing), we ablate over different
choices of exploration policy: the FBE heuristic, agents trained in
ROBOTHOR, and HABITAT (MP3D). We find that FBE outper-
forms learnable alternatives on both PASTURE and ROBOTHOR.
HABITAT learnable model perform worst, but are not trained on
any PASTURE or ROBOTHOR data.

CoW breeds PASTURE Uncom. ROBOTHOR
ID Loc. Arch. Obj. Prior SPL SR SPL SR

N OWL B/32 None 20.5 32.8 16.8 26.7N OWL B/32 GPT-3.5 22.2 36.9 17.0 27.5

Table 3. CoW with GPT-3.5 priors. Leveraging GPT-3.5, we
generate priors for objects (e.g., apples are likely to be in dining
room scenes). Instead of directly searching for the target object,
CoW first searches for the scenes, which boosts performance.

cern in the case of hidden objects than for visible object
targets. In light of the fact that detection methods generally
work better on larger objects, we hypothesize this effect is
because distractor objects are smaller (e.g., apples, vases,
basketballs) than objects used to conceal target categories
(e.g., beds, sofas, etc.).

What exploration method performs best? We ablate
the decision to use FBE for most experiments by fixing an
object localizer (OWL, B/32 (N)) and comparing against
ROBOTHOR learnable exploration and HABITAT learnable
exploration in Tab. 2. We notice that FBE performs best in
all cases; however, learnable exploration still performs well
suggesting that these models do learn useful strategies for
the downstream tasks.
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(c) Hidden object navigation
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Figure 5. PASTURE object navigation with descriptions. In general object navigation with descriptions is more challenging than the
ROBOTHOR object navigation task, as indicated by trend lines lying below the y = x line. (a) Appearance descriptions are more helpful
than spatial descriptions. (b) Performance further drops when distractor objects are introduced to the environment. However, CoWs are still
able to make better use of appearance description than spatial descriptions. (c) Models in the lower success regime (<15% ROBOTHOR
SUCCESS) perform comparably on finding hidden objects. However, this trend plateaus for higher success models. (d) Trends are similar
when distractor objects are introduced for hidden object navigation.

plore this hypothesis in Appx. E by visualizing CLIP re-
trieval results on LAION-5B [68] for the uncommon ob-
ject categories. The relatively high performance on uncom-
mon objects speaks to the flexibility of CoW baselines and
their ability to inherit desirable properties from the open-
vocabulary models that they are constructed from.
Can CoWs utilize appearance and spatial descriptions?
Looking at Fig. 5 (a) we see that neither appearance nor spa-
tial descriptions improve CoW performance compared to
their ROBOTHOR baseline performance (i.e., most points
lie under the y = x line). However, CoW is able to take
better advantage of appearance descriptions than spatial de-
scriptions. These results motivate future investigation on
open-vocabulary object localization with a greater focus on
textual object attributes.
Can CoWs find visible objects in the presence of distrac-
tors? In Fig. 5 (b) we see that CoWs experience perfor-
mance degradation when compared to Fig. 5 (a). We con-
clude that appearance and spatial attributes added as lan-
guage input are not sufficient to deal with the complexity of
distractors given current open-vocabulary models.
Can CoWs find hidden objects? Looking at Fig. 5 (c) we
notice that models in the lower success regime (less than
15% SUCCESS on ROBOTHOR) are able to find hidden ob-
jects at about the same rate as ROBOTHOR objects (i.e.,
they lie on the y = x line). OWL models in the higher suc-
cess regime (>15%) do not continue this trend; however,
they do achieve higher absolute accuracy as seen in Tab. 1.
Dealing with occlusion is a longstanding problem in com-
puter vision, and these results provide a foundation upon
which future hidden object navigation work can improve.
Can CoWs find hidden objects in the presence of dis-
tractors? Comparing Figs. 5 (c) and (d), we notice similar
trends lines, with the best models performing worse with
distractors. This suggests that distractors are less of a con-

CoW breeds PASTURE (Avg.) ROBOTHOR
ID Loc. Arch. Exp. Strategy SPL SR SPL SR

N OWL B/32 ROBOTHOR learn. 10.2 17.3 13.1 20.9N OWL B/32 HABITAT learn. 8.6 19.4 9.8 20.4N OWL B/32 FBE 12.6 21.1 16.9 26.7

Table 2. Exploration ablation. For a fixed object localizer
(OWL-ViT B/32 with post processing), we ablate over different
choices of exploration policy: the FBE heuristic, agents trained in
ROBOTHOR, and HABITAT (MP3D). We find that FBE outper-
forms learnable alternatives on both PASTURE and ROBOTHOR.
HABITAT learnable model perform worst, but are not trained on
any PASTURE or ROBOTHOR data.

CoW breeds PASTURE Uncom. ROBOTHOR
ID Loc. Arch. Obj. Prior SPL SR SPL SR

N OWL B/32 None 20.5 32.8 16.8 26.7N OWL B/32 GPT-3.5 22.2 36.9 17.0 27.5

Table 3. CoW with GPT-3.5 priors. Leveraging GPT-3.5, we
generate priors for objects (e.g., apples are likely to be in dining
room scenes). Instead of directly searching for the target object,
CoW first searches for the scenes, which boosts performance.

cern in the case of hidden objects than for visible object
targets. In light of the fact that detection methods generally
work better on larger objects, we hypothesize this effect is
because distractor objects are smaller (e.g., apples, vases,
basketballs) than objects used to conceal target categories
(e.g., beds, sofas, etc.).

What exploration method performs best? We ablate
the decision to use FBE for most experiments by fixing an
object localizer (OWL, B/32 (N)) and comparing against
ROBOTHOR learnable exploration and HABITAT learnable
exploration in Tab. 2. We notice that FBE performs best in
all cases; however, learnable exploration still performs well
suggesting that these models do learn useful strategies for
the downstream tasks.
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(c) Hidden object navigation

0 10 20 30
RoboTHOR Success

0

5

10

15

20

25

30

P
a
st

u
r
e
:

S
in

gl
e

in
st

an
ce

vi
si
bl

e
S
u
c
c
e
ss

(d) Hidden object navigation
with distractors

y = x

Hidden object
descriptions on task y

Figure 5. PASTURE object navigation with descriptions. In general object navigation with descriptions is more challenging than the
ROBOTHOR object navigation task, as indicated by trend lines lying below the y = x line. (a) Appearance descriptions are more helpful
than spatial descriptions. (b) Performance further drops when distractor objects are introduced to the environment. However, CoWs are still
able to make better use of appearance description than spatial descriptions. (c) Models in the lower success regime (<15% ROBOTHOR
SUCCESS) perform comparably on finding hidden objects. However, this trend plateaus for higher success models. (d) Trends are similar
when distractor objects are introduced for hidden object navigation.

plore this hypothesis in Appx. E by visualizing CLIP re-
trieval results on LAION-5B [68] for the uncommon ob-
ject categories. The relatively high performance on uncom-
mon objects speaks to the flexibility of CoW baselines and
their ability to inherit desirable properties from the open-
vocabulary models that they are constructed from.
Can CoWs utilize appearance and spatial descriptions?
Looking at Fig. 5 (a) we see that neither appearance nor spa-
tial descriptions improve CoW performance compared to
their ROBOTHOR baseline performance (i.e., most points
lie under the y = x line). However, CoW is able to take
better advantage of appearance descriptions than spatial de-
scriptions. These results motivate future investigation on
open-vocabulary object localization with a greater focus on
textual object attributes.
Can CoWs find visible objects in the presence of distrac-
tors? In Fig. 5 (b) we see that CoWs experience perfor-
mance degradation when compared to Fig. 5 (a). We con-
clude that appearance and spatial attributes added as lan-
guage input are not sufficient to deal with the complexity of
distractors given current open-vocabulary models.
Can CoWs find hidden objects? Looking at Fig. 5 (c) we
notice that models in the lower success regime (less than
15% SUCCESS on ROBOTHOR) are able to find hidden ob-
jects at about the same rate as ROBOTHOR objects (i.e.,
they lie on the y = x line). OWL models in the higher suc-
cess regime (>15%) do not continue this trend; however,
they do achieve higher absolute accuracy as seen in Tab. 1.
Dealing with occlusion is a longstanding problem in com-
puter vision, and these results provide a foundation upon
which future hidden object navigation work can improve.
Can CoWs find hidden objects in the presence of dis-
tractors? Comparing Figs. 5 (c) and (d), we notice similar
trends lines, with the best models performing worse with
distractors. This suggests that distractors are less of a con-

CoW breeds PASTURE (Avg.) ROBOTHOR
ID Loc. Arch. Exp. Strategy SPL SR SPL SR

N OWL B/32 ROBOTHOR learn. 10.2 17.3 13.1 20.9N OWL B/32 HABITAT learn. 8.6 19.4 9.8 20.4N OWL B/32 FBE 12.6 21.1 16.9 26.7

Table 2. Exploration ablation. For a fixed object localizer
(OWL-ViT B/32 with post processing), we ablate over different
choices of exploration policy: the FBE heuristic, agents trained in
ROBOTHOR, and HABITAT (MP3D). We find that FBE outper-
forms learnable alternatives on both PASTURE and ROBOTHOR.
HABITAT learnable model perform worst, but are not trained on
any PASTURE or ROBOTHOR data.

CoW breeds PASTURE Uncom. ROBOTHOR
ID Loc. Arch. Obj. Prior SPL SR SPL SR

N OWL B/32 None 20.5 32.8 16.8 26.7N OWL B/32 GPT-3.5 22.2 36.9 17.0 27.5

Table 3. CoW with GPT-3.5 priors. Leveraging GPT-3.5, we
generate priors for objects (e.g., apples are likely to be in dining
room scenes). Instead of directly searching for the target object,
CoW first searches for the scenes, which boosts performance.

cern in the case of hidden objects than for visible object
targets. In light of the fact that detection methods generally
work better on larger objects, we hypothesize this effect is
because distractor objects are smaller (e.g., apples, vases,
basketballs) than objects used to conceal target categories
(e.g., beds, sofas, etc.).

What exploration method performs best? We ablate
the decision to use FBE for most experiments by fixing an
object localizer (OWL, B/32 (N)) and comparing against
ROBOTHOR learnable exploration and HABITAT learnable
exploration in Tab. 2. We notice that FBE performs best in
all cases; however, learnable exploration still performs well
suggesting that these models do learn useful strategies for
the downstream tasks.
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Figure 5. PASTURE object navigation with descriptions. In general object navigation with descriptions is more challenging than the
ROBOTHOR object navigation task, as indicated by trend lines lying below the y = x line. (a) Appearance descriptions are more helpful
than spatial descriptions. (b) Performance further drops when distractor objects are introduced to the environment. However, CoWs are still
able to make better use of appearance description than spatial descriptions. (c) Models in the lower success regime (<15% ROBOTHOR
SUCCESS) perform comparably on finding hidden objects. However, this trend plateaus for higher success models. (d) Trends are similar
when distractor objects are introduced for hidden object navigation.

plore this hypothesis in Appx. E by visualizing CLIP re-
trieval results on LAION-5B [68] for the uncommon ob-
ject categories. The relatively high performance on uncom-
mon objects speaks to the flexibility of CoW baselines and
their ability to inherit desirable properties from the open-
vocabulary models that they are constructed from.
Can CoWs utilize appearance and spatial descriptions?
Looking at Fig. 5 (a) we see that neither appearance nor spa-
tial descriptions improve CoW performance compared to
their ROBOTHOR baseline performance (i.e., most points
lie under the y = x line). However, CoW is able to take
better advantage of appearance descriptions than spatial de-
scriptions. These results motivate future investigation on
open-vocabulary object localization with a greater focus on
textual object attributes.
Can CoWs find visible objects in the presence of distrac-
tors? In Fig. 5 (b) we see that CoWs experience perfor-
mance degradation when compared to Fig. 5 (a). We con-
clude that appearance and spatial attributes added as lan-
guage input are not sufficient to deal with the complexity of
distractors given current open-vocabulary models.
Can CoWs find hidden objects? Looking at Fig. 5 (c) we
notice that models in the lower success regime (less than
15% SUCCESS on ROBOTHOR) are able to find hidden ob-
jects at about the same rate as ROBOTHOR objects (i.e.,
they lie on the y = x line). OWL models in the higher suc-
cess regime (>15%) do not continue this trend; however,
they do achieve higher absolute accuracy as seen in Tab. 1.
Dealing with occlusion is a longstanding problem in com-
puter vision, and these results provide a foundation upon
which future hidden object navigation work can improve.
Can CoWs find hidden objects in the presence of dis-
tractors? Comparing Figs. 5 (c) and (d), we notice similar
trends lines, with the best models performing worse with
distractors. This suggests that distractors are less of a con-

CoW breeds PASTURE (Avg.) ROBOTHOR
ID Loc. Arch. Exp. Strategy SPL SR SPL SR

N OWL B/32 ROBOTHOR learn. 10.2 17.3 13.1 20.9N OWL B/32 HABITAT learn. 8.6 19.4 9.8 20.4N OWL B/32 FBE 12.6 21.1 16.9 26.7

Table 2. Exploration ablation. For a fixed object localizer
(OWL-ViT B/32 with post processing), we ablate over different
choices of exploration policy: the FBE heuristic, agents trained in
ROBOTHOR, and HABITAT (MP3D). We find that FBE outper-
forms learnable alternatives on both PASTURE and ROBOTHOR.
HABITAT learnable model perform worst, but are not trained on
any PASTURE or ROBOTHOR data.

CoW breeds PASTURE Uncom. ROBOTHOR
ID Loc. Arch. Obj. Prior SPL SR SPL SR

N OWL B/32 None 20.5 32.8 16.8 26.7N OWL B/32 GPT-3.5 22.2 36.9 17.0 27.5

Table 3. CoW with GPT-3.5 priors. Leveraging GPT-3.5, we
generate priors for objects (e.g., apples are likely to be in dining
room scenes). Instead of directly searching for the target object,
CoW first searches for the scenes, which boosts performance.

cern in the case of hidden objects than for visible object
targets. In light of the fact that detection methods generally
work better on larger objects, we hypothesize this effect is
because distractor objects are smaller (e.g., apples, vases,
basketballs) than objects used to conceal target categories
(e.g., beds, sofas, etc.).

What exploration method performs best? We ablate
the decision to use FBE for most experiments by fixing an
object localizer (OWL, B/32 (N)) and comparing against
ROBOTHOR learnable exploration and HABITAT learnable
exploration in Tab. 2. We notice that FBE performs best in
all cases; however, learnable exploration still performs well
suggesting that these models do learn useful strategies for
the downstream tasks.
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CoWs on PASTURE: Baselines and Benchmarks for Language-Driven Zero-Shot Object Nav.

We appreciate the reviewers’ helpful feedback. Pwch

highlights our “benchmark is well designed” and “closely
reflects... real-world settings”. bhV8 mentions “experi-
ments are relevant”. Pwch, KYrR acknowledge remark-
able baselines and agree the paper addresses a “new and
interesting” topic. KYrR centers our “impressive results”.
Pwch, KYrR, bhV8 all mention clear presentation.
• Pwch: Can finding distractors count as SUCCESS?

Thank you for the question. We ensure that distractors are
placed sufficiently far from the true targets so this case can-
not arise. We will add this missing detail to the paper.
• Pwch: Training learned exploration for longer. Thank
you for the great suggestion. We ran an agent [23], trained
for 200M steps on iTHOR. FBE beats this alternative by 4.3
SPL points on PASTURE. We conjecture, training for longer
may also lead to overfitting to the training distribution.
• KYrR: Can method novelty be improved? Thank
you for the question. We experiment with incorporating
GPT-3 generated priors for better L-ZSON. Tab. 1 gives an
overview and SPL gains. Also, we frame our paper as pro-
viding baselines and benchmarks (L121-156). Methods are
important, but we believe our empirical investigation is also
very valuable. Thank you for your consideration.
• KYrR: Relation to prior baselines/benchmarks. Thank
you for the references. SOON, REVERIE, and REVE-CE

allow for navigation training on categories they evaluate at
test-time. In contrast, we investigate a zero-shot evaluation
setting (L100-104), which reflects people wanting robots
to find new objects, without conducting data-collection or
navigation training on the new categories. Hence, CoW is
not directly comparable to baselines in the aforementioned
benchmarks. While, these benchmarks contain target ob-
ject descriptions, they do not evaluate finding hidden ob-

jects (e.g., mug under bed) or uncommon objects (e.g., tie
dye surfboards) as in PASTURE. We will add this necessary
discussion to a revamped “VLN” related work section.
• KYrR: Are prompts natural enough? We believe, yes:
post GPT-3, the use of templated prompts does not weaken
our benchmark. GPT-3 is capable of textual style transfer
(e.g., converting arbitrary instructions to templates), which
can shrink the gap between different forms of language. We
will add examples to the Supp. Please note: CoW baselines
do not require templated language and are instead limited
by the max sequence length of their text encoders.
• KYrR: Why discuss others in detail when OWL-ViT is

best? Thank you for raising this point. We originally opted
for completeness in our baseline presentation. However, we
now see that the writing is too verbose. We will move more
details to the Supp. and use the space to discuss the “CoW
+ GPT-3 prior” baseline we ran inspired by your comments.
• KYrR: L320. You are correct. The influence of state

ROBOTHOR PASTURE Uncom.
CoW breeds SPL SR SPL SR

OWL ViT-B/32 16.8 26.7 20.5 32.8
OWL ViT-B/32 + GPT-3 priors 17.0 (+0.2) 27.5 (+0.8) 22.2 (+1.7) 36.9 (+4.1)

Table 1. CoW + GPT-3 priors. Leveraging GPT-3, we generate
priors for objects (e.g., apples are likely to be in kitchen or dining

room scenes). Instead of directly searching for the target object,
CoW first searches for the scenes, which boosts performance.

visitation-counts is overstated, and we will remove the line.
• bhV8: Comparison with more intelligent agents. Moti-
vated by your excellent comments, we add a baseline, which
leverages GPT-3 generated sub-goals (see Tab. 1 for de-
tails). The idea is to use object-localization to first search
for a coarse sub-goal, thereby relaxing reliance on heuristic
exploration. This change also results in exploration failure
(L735) dropping by ⇠2%. Note: the mentioned map-based
policies are not comparable in our zero-shot setting (L100-
104). SemExp [a] / SEAL [b], condition policy learning on
a 3D semantic map, with fixed categories. Hence, the poli-
cies do not generalize to new classes. CLIP-Fields [c] trains
a NeRF-style model on a target room. The resulting model
does not generalize to unseen rooms.
• bhV8: Discussion of limitations and the real-world.

We identify the lack of real-world experiments as a limita-
tion (L806-852). We also quantify limitations due to explo-
ration, localization, and planning (L734-747). Furthermore,
we evaluate CoW baselines on HABITAT MP3D (Tab. 3,
L827), which is generated from 3D reconstructions of real-
world environments. Implementing CoW in real, however,
a highly relevant suggestion. We hypothesize the major bot-
tleneck is engineering with sensors and actuators, not CLIP
performance. We will add this discussion to the paper.
• bhV8: Are CoW baselines intelligent? You are cor-
rect that CoW exploration is not goal oriented (L299-302).
However, CoW sill beats by a large margin or matches end-

to-end leanable competitors (L748-805). This suggests (1)
CoW is at least as effective as these baselines, (2) a great
need to improve learnable zero-shot object navigators, (3)
learned methods are not as intelligent as we would like them
to be. Thank you for motivating this relevant discussion.
• bhV8: Metrics for intelligence. CoW beats end-to-end
learnable alternatives in SPL, which penalizes non-efficient
exploration. We feel that SPL is still a good measure of
intelligent behavior; however, SPL may be too low in abso-
lute terms for existing L-ZSON/ZSON methods to be con-
sidered intelligent. Since CoW is not end-to-end learnable,
it is a valuable comparison for future learnable methods. To
improve our understanding, we follow your valuable sug-
gestions: (1) the fraction of frames where CoW is exploring
is 56% vs. 53% after the GPT-3 addition discussed in Tab. 1.
(2) SUCCESS when the object is not seen is in fact 0.
• bhV8: Qualitative results. Please see Fig. 1, 2 in Supp.
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Figure 6. Failure analysis for OWL, B/32 (N). Exploration and
object localization errors occur at similar ratios, with increased
localization failures in the presence of distractors.

Can CoW incorporate object priors? Examining Tab. 3,
we see that incorporating GPT-3.5 object-level priors im-
proves performance on both PASTURE uncommon objects
and ROBOTHOR. These initial results suggest positive
trends for incorporating outside knowledge into CoW. Fu-
ture work may consider more sophisticated methods for in-
jecting priors to steer navigation.
How do CoWs fail? We identify three high-level failure
modes. (1) Exploration fail: the target is never seen. (2)
Object localization fail: the target is seen but the localizer
never fires. (3) Planning fail: the target is seen and the
localizer fires, but planning fails due to inaccuracy in the
map representation (Sec. 4.2). Looking at Fig. 6, we notice
a large fraction of failures are due to exploration and object
localization. This suggests CoWs may continue to improve
as research in these fields progress. In Fig. 6 we also see
that in cases where distractors are present a higher fraction
of object localization failures occur, further suggesting that
open-vocabulary models currently struggle to make full use
of attribute prompts. See Appx. I for more failure analysis.

6.3. Comparison to Prior Art

We primarily evaluate CoWs in general L-ZSON set-
tings; however, we further evaluate CoWs on ZSON bench-
marks to establish them as a strong baseline for these tasks.
Recall, ZSON can be seen as a case of L-ZSON where only
object goals are specified (no attributes).

In Tab. 4, we see there exists a CoW that outperforms
the end-to-end baselines in all cases except SUCCESS on
HABITAT (MP3D). For instance, the CLIP-Grad., B/32
(N) matches the SemanticNav-ZSON model on HABITAT
(MP3D) SPL: 4.9 for CoW v.s. 4.8 for the competitor,
while improving over EmbCLIP-ZSON ROBOTHOR by
15.6 percentage points. To contextualize this result, CoWs
train for 0 navigation steps, while SemanticNav-ZSON and
EmbCLIP-ZSON train in the target evaluation simulators
for 500M and 60M steps respectively.

HABITAT ROBOTHOR ROBOTHOR Nav.
CoW breeds (MP3D) (subset) (full) training

ID Loc. Arch. SPL SR SPL SR SPL SR steps

N CLIP-Grad. B/32 4.9 9.2 15.0 23.7 9.7 15.2 0N OWL B/32 3.7 7.4 20.8 32.5 16.9 26.7 0

EmbCLIP-ZSON [38] – – – 8.1 – 14.0⇤ 60M

SemanticNav-ZSON [46] 4.8 15.3 – – – – 500M

Table 4. Comparison to prior art on existing ZSON bench-
marks. CoWs are able to match or out-compete existing methods
that leverage millions of steps of navigation training in the evalu-
ation simulator. ⇤indicates a result from prior work that includes,
non-zero-shot evaluation. Specifically, only 1/4 of the evaluations
are zero-shot on ROBOTHOR (subset) and the remaining 3/4 on
categories seen during training.

The superior performance of SemanticNav-ZSON in
terms of MP3D SUCCESS indicates that there can be bene-
fits to in-domain learning. Future work may consider unify-
ing the benefits of CoW-like models and fine-tuned models.

7. Limitations and Conclusion

Limitations. While our evaluation of CoWs on HABI-
TAT, ROBOTHOR, and PASTURE is a step towards assess-
ing their performance in different domains, ultimately, real-
world performance matters most. Hence, the biggest lim-
itation of our work is the lack of large-scale, real-world
benchmarking—which is also missing in much of the re-
lated literature. Additionally, CoW inherents the meta-
limitations of the object localization and exploration meth-
ods considered. For example, object localizers require tun-
ing a confidence threshold to balance precision and recall.
Finally, we do not consider different agent embodiment or
continuous action spaces. This is a pertinent investigation
given recent findings of Pratt et al. [59] that agent morphol-
ogy can be a big determinant of downstream performance.
Conclusion. This paper introduces the PASTURE bench-
mark for language-driven zero-shot object navigation and
several CLIP on Wheels baselines, translating the successes
of existing zero-shot models to an embodied task. We view
CoW as an instance of using open-vocabulary models, with
text-based interfaces, to tackle robotics tasks in more flex-
ible settings. We hope that the baselines and the proposed
benchmark will spur the field to explore broader and more
powerful forms of zero-shot embodied AI.
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Future Directions: Real World Mobile Manipulation

Stone et al. Open-World Object Manipulation using Pre-Trained Vision-Language Model. 2023.

https://www.youtube.com/watch?v=tOx-lGRjN7Q


Key Takeaways

• Baselines, even if they are heuristic or naive, are incredibly important to 
contextualize the performance of learned methods


• Zero-shot object navigation is an important problem to work on, current 
methods are still in their infancy
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